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Abstract

Buckling and imperfection sensitivity are the primary considerations in analysis and design of thin shell
structures[ The objective here is to develop accurate and e.cient capabilities to predict the postbuckling
behavior of shells\ including imperfection sensitivity[ The approach used is based on the LyapunovÐSchmidtÐ
Koiter "LSK# decomposition and asymptotic expansion in conjunction with the _nite element method[ This
LSK formulation for shells is derived and implemented in a _nite element code[ The method is applied to
cylindrical and spherical shells[ Cases of linear and nonlinear prebuckling behavior\ coincident as well as
non!coincident buckling modes\ and modal interactions are studied[ The results from the asymptotic analysis
are compared to exact solutions obtained by numerically tracking the bifurcated equilibrium branches[ The
accuracy of the LSK asymptotic technique\ its range of validity\ and its limitations are illustrated[ Þ 0888
Elsevier Science Ltd[ All rights reserved[

Nomenclature

u0\ u1\ u2 curvilinear coordinates
"=#\a 1"=#:1ua

R position vector of a point on the reference surface before deformation
R	 position vector of a point on a lamina before deformation
D director normal to the reference surface before deformation
z scalar distance of a point on a lamina from the reference surface
Aa tangent vector to the reference surface in the direction of ua before deformation
Ga covariant basis vector in the direction of ua before deformation
Ga contravariant basis vector "before deformation#
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r position vector of a point on the reference surface after deformation
r½ position vector of a point on a lamina after deformation
d director D after deformation
aa tangent vector to the reference surface in the direction of ua after deformation
ga covariant basis vector in the direction of ua after deformation
ga contravariant basis vector "after deformation#
u displacement of a point on the reference surface
u½ displacement of a point on a lamina
b "d−D# change in director

0[ Introduction

Thin!walled structures are capable of carrying loads very e.ciently[ However\ they are prone
to buckling[ They often have multiple\ coincident or nearly coincident buckling modes\ and can
be very sensitive to imperfections[ For such structures\ even a small imperfection can produce a
large drop in the load carrying capacity[ In view of the above\ the subject of shell stability always
deserves rigorous attention and stability\ not strength\ is the more important factor in the design
of shells[

This paper is a continuation of a previous e}ort by Peek and Kheyrkhahan "0882# to apply the
LyapunovÐSchmidtÐKoiter asymptotic approach in conjunction with the _nite element method[
This asymptotic approach was conceived by Koiter "0834# independently from the earlier work by
the mathematicians Lyapunov and Schmidt "see e[g[ Vainberg and Trenogin\ 0851#\ to explain the
high imperfection sensitivity of the buckling load of certain structures\ such as cylindrical shells
under axial compression[

Koiter|s method is applicable for the case of a single buckling mode\ or for multiple\ fully
coincident modes[ The methodology was used in numerous analytical studies "see e[g[ Amazigo et
al[\ 0869^ Budiansky\ 0863^ Hui and Du\ 0876^ Hutchinson and Amazigo\ 0856^ Hutchinson
and Frauenthal\ 0858^ Rizzi and Tatone\ 0874^ Semenyuk\ 0876# on postbuckling behavior and
imperfection sensitivity of various structures for which the prebuckling solution and the buckling
modes can be obtained analytically[ For other structures\ for which one has to resort to numerical
methods\ the singular asymptotic expansions have also proven useful "see e[g[ Potier!Ferry\ 0876^
Carnoy\ 0879#[

For many structures and especially thin shells for which geometry and boundary conditions
preclude inextensional deformations a large number of nearly coincident buckling modes occur[
Koiter|s version of the singular asymptotic expansions is not directly applicable for this case[ In
view of this\ Byskov and Hutchinson "0866# developed an approach in which a number of nearly
coincident or even non!coincident buckling modes can be included in the asymptotic analysis[
Whereas their formulation of the asymptotics is limited to problems with linear prebuckling
behavior\ this restriction was removed in the work of Peek and Kheyrkhahan "0882#\ who gen!
eralized the LSK approach so that it could be applied to structures where the prebuckling behavior
is nonlinear and at the same time the modes included in the asymptotic analysis need not be fully
coincident[

Peek and Kheyrkhahan "0882# applied their generalized LSK asymptotic method to a variety
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of simple one!dimensional structures\ with a single buckling mode\ or two fully coincident modes[
The purpose of this paper is to apply the LSK approach to more realistic and complicated
structures "shells#\ and to evaluate the e}ectiveness of the approach for the case when the modes
are indeed not fully coincident[

1[ The LSK asymptotic method

The theory of LyapunovÐSchmidtÐKoiter decomposition and asymptotic expansions was dis!
cussed in detail in our previous work "see Peek and Kheyrkhahan\ 0882#[ However\ a brief
description of the LSK technique seems necessary so that the readers can follow derivations of the
LSK element\ as well as subsequent asymptotic analyses[

Suppose that the structure considered is elastic with a potential energy function f � f "u\ l\ u¹#
where u is the displacement _eld\ l is the load parameter\ u¹ represents an imperfection with u¹ � 9
corresponding to the perfect structure[ The spaces of admissible displacement and imperfection
_elds are denoted by A and AÞ\ respectively[ A principal solution u

9
"l# exists which vanishes at l � 9

and satis_es the equilibrium condition

f\u"u
9
"l#\ l\ 9# du � 9 [ du $ A\ [l "0#

where "=#\u denotes a Gateaux "or Frechet# derivative[ A reference point on the principal equilibrium
branch is chosen\ about which the asymptotic expansion is carried out[ The value of the load
parameter l at the reference point is denoted by lc[ In contrast to the classical analysis by Koiter
"0834# in which the expansion is performed about a multiple bifurcation point\ here the reference
point need not coincide with any of the bifurcation points[ Indeed any point on the principal
equilibrium branch can be used as the reference point[ The asymptotic expansion is valid in some
neighborhood of the reference point whether the modes are fully coincident\ closely spaced\ or
well separated[ The space of admissible displacements A is decomposed into a subspace A9\ which
is spanned by a _nite number of modes u½

i

\ and a complementary space A
 such that

A � A9 $ A
 "1a#

A9 K A
 � "9# "1b#

and there exists an a × 9 such that

fc
\uudu¼ du¼ − a [ du¼ $ A
 with a × 9 and >du¼> � 0 "2#

Equations "1# ensure that any displacement _eld u $ A can be decomposed uniquely as

u � u9¦u¼\ u9 $ A9\ u¼ $ A
 "3a#

or

u � s
i

jiu½
i

¦u¼\ u¼ $ A
 "3b#

where ji are scalar coe.cients[ Equation "2# ensures positive de_niteness of the stability operator
fc

\uu restricted to A
 in a nonvanishing neighborhood of the reference point[ This decomposition
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might be viewed by the _nite element analyst as a nonlinear static condensation] one goes from a
displacement _eld u "as described by all the nodal displacements and rotations# to a reduced set
of degrees of freedom ji which are chosen in such a way that for _xed ji there can be no loss of
stability[

The space A
 is often taken to be the orthogonal complement of A9\ but as was observed by
Thompson and Hunt "0862#\ it is not necessary to introduce this restriction[ Considerable ~exibility
also exists in the choice of the space A9[ For the case of fully coincident modes at l � lc\ the
natural choice for A9 is the nullspace of the stability operator evaluated at the reference point[ In
this case\ the basis vectors u½

i

satisfy

fc
\uuu½

i

du � 9 [ du $ A "4#

where a superscript c applied to the potential energy or any of its derivatives denotes evaluation
at the reference point\ "u\ l\ u¹# �"u

9
"lc#\ lc\ 9#[ If the buckling modes are not fully coincident\ then

u½
i

can be chosen as the eigenvectors corresponding to the smallest eigenvalues mi in

"fc
\uu¦mif¾ \uu#u½

i

du � 9\ [ du $ A "5#

where a dot placed above any entity denotes evaluation of that entity on the principal branch for
the perfect structure\ followed by di}erentiation with respect to l\ and evaluation at l � lc[ More
generally\ the modes u½

i

need neither be chosen from equation "4# nor from eqn "5#[ Any set of
linearly independent vectors can be chosen\ as long as conditions "1# and "2# are satis_ed "Peek
and Kheyrkhahan\ 0882#[ Applying the decomposition of eqn "3#\ displacements can be written as

u � u
9
"l#¦S

j
jiu½

i

¦u¼\ u¼ $ A
 "6#

Correspondingly\ the equilibrium conditions can be decomposed into the following two conditions

f\u0u
9
"l#¦S

j
u½
j

¦u¼\ l\ ou�1 du¼ � 9 [ du¼ $ A
 "7#

f\u 0u
9
"l#¦S

j
jju½

j

¦u¼\ l\ ou�1 u½
i

� 9 [ i "8#

In eqns "7# and "8#\ the imperfection has been written as u¹ � ou�\ where u�$ A
 is a normalized
imperfection shape\ and o is the scalar magnitude of imperfection[ The methodology is based on
solving _rst equation "7# for u¼\ and then substituting the results into eqn "8# to obtain a reduced
set of equilibrium equations for the modal displacement parameters ji\ which are then solved so
that both equilibrium conditions are satis_ed[

Equation "7# admits a unique solution u¼ � u¼ "ji\ l\ o# $ A
 for any given "ji\ l\ o# in the vicinity of
the reference point[ The corresponding total displacement can be written as

u � u"ji\ l\ o# 0 u
9
"l#¦s

j

jju½
j

¦u¼ "ji\ l\ o# "09#
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The set of all such solutions is referred to as the partial equilibrium surface "see e[g[ Thompson
and Hunt\ 0862^ Peek and Kheyrkhahan\ 0882#[ Di}erentiation of eqn "09# results in

u\i � u½
i

¦u¼ \i\ u\o � u¼ \o\ u\ij � u¼ \ij\ u\il � u¼ \il\ etc[ "00#

where "=#\i 0 1"=#:1ji[ The derivatives of the displacements with respect to parameters ji\ l\ and o\
evaluted at the reference point are denoted as follows

u
"i#

0 ðu\iŁ "ji\l\o#�"9\lc\9#\ u
"o#

0 ðu\oŁ "ji\l\o#�"9\lc\9#\ u
"ij#

0 ðu\ijŁ "ji\l\o#�"9\lc\9# "01#

u¼
"i#

0 ðu¼ \iŁ "ji\l\o#�"9\lc\9#\ u¼
"o#

0 ðu¼ \oŁ "ji\l\o#�"9\lc\9#\ u¼
"ij#

0 ðu¼ \ijŁ "ji\l\o#�"9\lc\9# "02#

With the aid of eqn "09#\ eqn "7# can be rewritten as

f\u"u"ji\ l\ o#\ l\ ou�# du¼ � 9\ [ du¼ $ A
\ ["ji\ l\ o# "03#

Taking derivatives of this equation with respect to ji\ l\ and o\ and then evaluating the results at
the reference point\ produces

fc
\uu u

"i#

du¼ � 9\ [ du¼ $ A
 "04#

"fc
\uu u

"l#

¦fc
\ul# du¼ � 9 [ du¼ $ A
 "05#

"fc
\uu u

"o#

¦fc
\uu¹u

�# du¼ � 9 [ du¼ $ A
 "06#

"fc
\uu u

"ij#

¦fc
\uuu u

"i#

u
" j#

# du¼ � 9 [ du¼ $ A
 "07#

"fc
\uu u

"il#

¦f¾ \uu u
"i#

# du¼ � 9 [ du¼ $ A
 "08#

It follows from eqns "04#\ "00#\ and "01# that

u
"i#

� u½
i

¦u¼
"i#

"19#

fc
\uu"u½

i

¦u¼
"i#

# du¼ � 9 [ du¼ $ A
 "10#

Equation "10# admits unique solutions for u¼
"i#

$ A
[ Once this solution is available\ u
"i#

can be calculated

from eqn "19#[ It can be shown that the quantities u
"l#

\ u
"ll#

\ and similar higher order derivatives are

all zero "Peek and Kheyrkhahan\ 0882#[ The unknown quantities u
"o#

\ u
"ij#

\ u
"il#

are in space A
\ and can
be determined uniquely from eqns "06#Ð"08#[ Thus\ an asymptotic expansion for the displacements
on the partial equilibrium surface can be obtained as follows

u"ji\ l\ o# � u
"9#

"l#¦s
j

ji u
"i#

¦Dlu¾¦ou
"o#

¦
0
1

s
i\j

jijj u
"ij#

¦Dl s
i

ji u
"il#

¦= = = "11#

where Dl 0 l−lc[ Consider now the second equilibrium condition\ eqn "8#[ If a reduced potential
energy function is de_ned as
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c"ji\ l\ o# 0 f"u"ji\ l\ o#\ l\ ou�# "12#

and this is di}erentiated with respect to ji\ one obtains

c\i � f\u"u½
i

¦u¼ \i# � f\uu½
i

"13#

Thus\ stationarity of the reduced potential energy "c\i � 9# is seen to be equivalent to the equi!
librium condition "8#[ The equilibrium states are stable if and only if the matrix c\ij is positive
de_nite "Triantafyllidis and Peek\ 0881#[ Asymptotic expansion of eqn "13# about the reference
point "ji\ l\ o# �"9\ lc\ 9# produces

c\i � ofio¦s
j

fijjj¦s
j

fijljjDl¦
0
1

s
j\k

fijkjjjk¦s
j

fijojjo¦fiolo Dl¦
0
5

s
j\k\l

fijkljjjkjl

¦
0
1

s
j\k

fijkljjjk Dl¦
0
1

s
j

fijlljj Dl1¦= = = � 9 "14#

The postbuckling coe.cients fio\ fij\ fijl\ fijk\ etc[ are derivatives of the reduced potential energy
evaluated at the reference point[ It follows from equilibrium at all points along the principal
branch that the derivatives fil\ fill\ filll\ [ [ [ are all zero "Peek and Kheyrkhahan\ 0882#\ so the
corresponding terms are not shown in eqn "14#[ The expressions for other derivatives of the reduced
potential energy can be simpli_ed with the aid of eqn "04#\ to obtain

fio � fc
\uu¹u

�u
"i#

\ fij � fc
\uu u

"i#

u
" j#

\ fijl � f¾ \uu u
"i#

u
" j#

"15#

fijk � fc
\uuu u

"i#

u
" j#

u
"k#

\ fijo �"fc
\uuu u

"o#

¦fc
\uuu¹u

�#u
"i#

u
" j#

"16#

fiol �"f¾ \uu u
"o#

¦f¾ \uu¹u
�#u

"i#

\ fijll � f� \uu u
"i#

u
" j#

−1fc
\uu u

"il#

u
" jl#

"17#

fijkl � fc
\uuuu u

"i#

u
" j#

u
"k#

u
"l#

−fc
\uu" u

"il#

u
" jk#

¦ u
" jl#

u
"ik#

¦ u
"kl#

u
"ij#

# "18#

fijkl � f¾ \uuu u
"i#

u
" j#

u
"k#

¦fc
\uuu" u

"il#

u
" j#

u
"k#

¦ u
" jl#

u
"i#

u
"k#

¦ u
"kl#

u
"i#

u
" j#

# "29#

The expansion in eqn "14# is valid no matter whether the modes are coincident\ closely spaced\ or
well separated[ Within this general framework\ a variety of decompositions of the space of
admissible displacements is possible\ depending on the choice of the complementary space A
[ The
examples considered by Peek and Kheyrkhahan "0882# suggest that if A
 is chosen as the orthogonal
complement of the space spanned by the buckling modes\ the results are more accurate[ This is the
decomposition we use to obtain numerical results for shells[

In the case of fully coincident modes\ asymptotic series solutions to eqn "14# can be obtained[
For an asymmetric solution "i[e[ when the coe.cients fijk are not all zero#\ the _rst term in the
series "or leading order solution# is obtained by solving a truncated version of eqn "14#\ in which
only the _rst four terms are included[ In order to obtain the next higher order term in the series
solutions the other terms shown in eqn "14# need to be considered as well[ Indeed\ simply solving
"14# numerically "including only the terms shown# yields a solution with higher order accuracy
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"i[e[ the error in the solution of the truncated series for the equilibrium equations is of the same
order as the error in a Taylor series expansion of the exact solution including the _rst two terms#[

For a symmetric bifurcation the coe.cients fijk are all zero[ Calculating the lowest possible
order solution then requires the fijkljjjkjl term in eqn "14# to be included in addition to the _rst
three terms[ In this case obtaining a solution with higher order accuracy would require including
additional terms not shown in "14#[

In the case of non!coincident modes\ asymptotic series solutions can only be obtained if a mode
splitting parameter is introduced "Peek and Kheyrkhahan\ 0882^ Triantafyllidis and Peek\ 0881#\
whereby the structure is modi_ed in such a way that for a zero value of the mode splitting
parameter\ the modes are fully coincident[ In the asymptotic series solutions that then arise\ the
mode splitting parameter is also expanded in terms of the solution parameter j[ As a result the
solutions calculated from the series expansion correspond not to di}erent solutions for a given
structure\ but rather to di}erent solutions for di}erent structures[ Since in the examples given
attention is focused on one given structure at a time\ the mode splitting parameter is not used here[
However it is clear from the mode slitting formalism\ that although the series expansion of the
reduced equilibrium eqn "14# is valid no matter whether the modes are coincident\ closely spaced\
or well separated\ the asymptotic solutions to this series will in general have a limited range of
validity[ This range of validity must extend to a value of the mode splitting parameter that describes
the actual structure to be analyzed[ Consequently\ solutions to the truncated series version of "14#
will in general only be valid if the modes are su.ciently closely spaced[ How close this must be is
investigated in the examples that follow[

2[ The LSK shell element

In a conventional nonlinear _nite element code\ calculations at the element level are limited to
computing the tangent sti}ness\ the element loads and the out!of!balance nodal forces[ However\
the {LyapunovÐSchmidtÐKoiter| decomposition and asymptotic expansion technique requires that
certain higher order derivatives of the potential function be computed as well[ The dot products
of the third and fourth variation of the potential function with the given vectors ðcorrected buckling
modes given by eqn "19#Ł have to be calculated[ In this section the general formulations of the
{LSK| shell element are presented[ The goal here is to provide an overview of the procedures
involved in developing the LSK shell element[ Algebraic derivations are included only to the extent
that is needed for clarity[

Calculation of the tangent sti}ness matrix depends on the relations between strains and dis!
placements[ We would like to develop a small strain\ large deformation shell element[ The _rst
step is to establish the strainÐdisplacement relations[

2[0[ Shell kinematics and discretization

Shell theories for use in _nite element applications has been an area of continuing development
"see e[g[ Ibrahimbegovic\ 0883^ Ibrahimbegovic and Frey\ 0883^ Basar and Ding\ 0884\ 0885^
Buchter and Ramm\ 0881^ Buchter et al[\ 0883^ Simo and Fox\ 0878#[ The intent here is not to
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Fig[ 0[ Geometry of the shell before and after deformation[

develop a new shell theory\ but rather to use a simple and reliable displacement!based approach[
For this purpose the following assumptions are made]

"i# the displacements and rotations may be arbitrarily large\ but the strains are small^
"ii# material _bers which are "approximately# normal to the reference surface remain straight and

inextensional during deformation\ but shear deformations by which the _bers can rotate with
respect to the reference surface are allowed^

"iii# the material behavior is linearly elastic^
"iv# the normal stress "i[e[ normal component of traction acting on a surface parallel to the

reference surface# is assumed to be zero for the purpose of determining the relationship
between the other stress and strain components\ and

"v# for the purpose of integrating the strain energy across the thickness of the shell\ the strain
tensor is _rt expressed in terms of orthonormal basis vectors that do not depend on the across!
thickness coordinate\ retaining only the constant and the _rst order terms in a Taylor series
expansion of these strain components across the thickness^ then integration across the thick!
ness is performed analytically\ neglecting any di}erence in area between an in_nitesimal
element of a lamina away from the reference surface and the corresponding in_nitesimal
element on the reference surface "as projected by the directors#[

The geometry of the shell before and after deformation is illustrated in Fig[ 0[ Therein "u0\ u1# are
the surface coordinates de_ning a point on the reference surface S\ with the position vector of a
point on this reference surface being denoted by R � R"u0\ u1# before deformation\ and r � r"u0\ u1#
after deformation[ The across!thickness coordinate u2 identi_es di}erent laminae L of the shell\
with the position vector of a point on a lamina being denoted by R	 � R	"u0\ u1\ u2# before defor!
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mation\ and by r½ � r½"u0\ u1\ u2# after deformation[ Also shown in Fig[ 0 are covariant basis vectors\
tangent vectors\ and directors de_ned by]

Undeformed con_guration]

R	"u0\ u1\ u2# � R"u0\ u1#¦zD"u0\ u1# u2 � z

Gi 0 R	\i G2 0 D Aa 0 R\a i � 0\ 1\ 2\ a � 0\ 1

Ga � R\a¦zD\a � Aa¦zD\a a � 0\ 1 "20#

Deformed con_guration]

r¼"u0\ u1\ u2# � r"u0\ u1#¦zd"u0\ u1# u2 � z

gi 0 r½\i g2 0 d aa 0 r\a i � 0\ 1\ 2\ a � 0\ 1

ga � r\a¦zd\a � aa¦zd\a a � 0\ 1 "21#

In the _nite element discretization the coordinates and the directors are interpolated from nodal
values\ in the deformed as well as the undeformed con_gurations[ As a result the interpolated
directors will not be exactly normal to the reference surface "i[e[ Aa = D � 9#\ nor will they have a
magnitude of precisely one[ On the other hand\ the coordinates "u0\ u1# will be chosen in such a
way that A0 and A1 are orthonormal with respect to each other at the Gaussian integration points
where the strain energy is evaluated[ This can readily be achieved\ since di}erent coordinates u0

and u1 can be chosen for every Gaussian integration point in question[
Referring to Fig[ 0\ the displacement of a typical point P on a lamina is

u½ � u¦zb "22#

where

b � d−D "23#

is the change in the director[ The relations between tangent vectors and the covariant basis vectors
in the deformed and undeformed con_gurations are found as follows

r � R¦u r½ � R	¦u½ "24#

r\a � R\a¦u\ac aa � Aa¦u\a "25#

r½\a � R	\a¦u½ \ac ga � Ga¦u½ \a "26#

Substitution of equation "22# in the above results in

ga � Ga¦u\a¦zb\a "27#

2[1[ StrainÐdisplacement relations

The GreenÐLagrange strain tensor is

E � EijG
iGj i\ j � 0\ 1\ 2 "28#

The strain components Eij are obtained from
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Eij �
0
1
"`ij−Gij# "39#

where `ij and Gij are metric tensors[ The strain tensor can be expanded as follows]

E � EabG
aGb¦Ea2"GaG2¦G2Ga#¦E22G

2G2 a\ b � 0\ 1 "30#

where Eab represent in!plane components[ The components of in!plane strain tensor given by
Kheyrkhahan "0884# are]

Eab � eab¦zkab¦O"z1# "31#

where

eab � 0
1
ðAa = u\b¦u\a = Ab¦u\a = u\bŁ a\ b � 0\ 1 "32#

and

kab � 0
1
ðD\a = u\b¦u\a = D\b¦Aa = b\b¦b\a = Ab¦u\a = b\b¦b\a = u\bŁ "33#

Calculation of in!plane strain tensor "E � EabG
aGb#\ involves multiplication by the contravariant

basis vectors Ga and Gb[ Kheyrkhahan "0884# calculated these basis vectors and showed that

E �"eab¦zKab¦O"z1##AaAb "34#

where eab is given in eqn "32#\ and Kab is as follows

Kab �"kab¦eagB
g
b¦ebgB

g
a# "35#

In the above relation kab is the same as eqn "33#\ while quantities Bg
b\ and the like are de_ned by

B g
b � −Ag = D\b "36#

The transverse shear components of the GreenÐLagrange strain tensor de_ned in "28# are given
by

Ea2 � 0
1
"ga = g2−Ga = G2# a � 0\ 1 "37#

Substitution of previous equations in the above and further simpli_cation "see Kheyrkhahan\
0884# results in

Ea2 � ea2¦O"z# "38#

where

ea2 � 0
1
"Aa = b¦u\a = D¦u\a = b# a � 0\ 1 "49#

The directors have been de_ned as material _bers that remain straight\ but so far there is no
requirement as to normality\ neither in the undeformed nor the deformed con_guration[ Indeed
in the approach used the coordinates u0 and u1 will be chosen in such a way that the vectors tangent
to the reference surface\ Aa are orthonormal with respect to each other\ but only approximately
orthogonal to the director D[ Therefore\ the strain tensor components Ea2 do not bear a direct
physical interpretation as a change in angle between two originally orthogonal material lines\ even
for small strains[ Rather\ for the case that Aa are orthonormal\ this change in angle is given by
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ga �
1

>A2>
EajA

j2 "40#

More precisely\ for small strains\ ga represents the change in angle between the tangent to the
reference surface along the ua coordinate direction\ and the normal to the reference surface[ In eqn
"40# Aj2 are the contravariant components of the metric tensor given by

ðAijŁ � ðAijŁ−0 �
0

0−a1
0−a1

1 &
0−a1

1 a0a1 −a0

a0a1 0−a1
0 −a1

−a0 −a1 0 ' "41#

where

ðAijŁ � &
0 9 a0

9 0 a1

a0 a1 0 ' \ aa � Aa = D\ D � A2 "42#

and A2 � A2j Aj is a vector normal to the reference surface[

2[2[ Potential function

The potential function f of a _nite element is given by

f �
0
1 gV

oTs dV "43#

where o is the strain vector\ and s represents the stress resultants[ Integration is carried out on the
element domain V[ The strain vector is composed of three membrane strains\ three curvature
changes\ and two transverse shear strains^

oT � "e00 e11 1e01 K00 K11 1K01 g0 g1# "44#

Correspondingly\ the stress resultants are three membrane forces\ three bending moments\ and
two shears[

sT � "N00 N11 N01 M00 M11 M01 Q0 Q1# "45#

The in!plane strains e00\ e11\ and e01\ are determined from eqn "32#[ Changes in the curvature K00\
K11\ and K01 are found from eqn "35#\ and the shear strains g0 and g1 are calculated from eqn "40#[

The stresses and strains are related by the tangent material matrix DÞ[

s � DÞo where DÞ � &
Dm 9 9

9 Db 9

9 9 Ds
' "46#

The submatrices Dm\ Db\ and Ds correspond to membrane\ bending\ and shear respectively\ and
are de_ned by
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Dm �
Eh

0−n1 &
0 n 9

n 0 9

9 9
0−n

1
' Db �

h1

01
Dm Ds � cGh $

0 9

9 0% "47#

In the above\ n is the Poisson ratio\ E is the modulus of elasticity\ and G is the shear modulus
G � E:"1¦1n#[

The factor c is introduced to account for out!of!straight deformations of the _bers[ A value of
c � 0 is consistent with the assumption that straight _bers remain straight[ However\ this assump!
tion implies a constant distribution of shear stress across the thickness\ which violates the condition
that the shear stress must vanish at the surfaces of the shell[ The actual distribution of shear
stresses is closer to parabolic\ corresponding to an S!shaped deformation of the _bers[ For this a
value of c � 4:5 is appropriate\ which is the value used in all the examples presented here[

Within the shell element a nine!node isoparametric formulation is used to interpolate from the
nodal values of the displacements and directors[ Membrane and shear locking is avoided by the
use of selective reduced integration[

The LSK formulation requires calculation of the derivatives of the element potential energy up
to the fourth order with respect to the nodal displacements[ This di}erentiation process is carried
out fully analytically\ resulting\ in some lengthy expressions\ which are given by Kheyrkhahan
"0884#\ but not reproduced here for the sake of brevity[ The needed derivatives of the potential
energy with respect to nodal coordinates are also evaluated analytically by Kheyrkhahan "0884#[
These are used in the imperfection sensitivity calculations presented here[

Pressure loads acting on the shell surface\ and their contribution to the derivatives of the
potential energy are also included[ Although on a single element level\ the pressure loads are non!
conservative\ in most physically realistic situations the pressure load does become a conservative
load when one considers the system as a whole[ "The potential of the pressure load is the pressure
multiplied by the change of volume contained by the shell[# This also applies to the spherical cap
problem with external pressure presented here[ The formulation for element pressure loads used
here is such that "i# it results in symmetric contribution to the element tangent sti}ness matrix\
and "ii# it gives the proper pressure potential for the system as a whole\ when the pressure loading
is conservative[ This is achieved by writing the change in volume contained by the shell as a sum
of element contributions\ which then gives rise to the element contributions to the pressure potential
"see Kheyrkhahan\ 0884#[

2[3[ Example 0] Cylinder with two coincident modes under axial load

Consider a cylinder of length l under axial loading between lubricated rigid end plates[ Such
lubricated rigid end plates restrain the displacement component normal to the end plate "both into
or out of the plate# at all points across the thickness of the shell\ but the component of displacement
tangential to the lubricated plate is not restrained[ "Thus\ rotation of the director is restrained
about an axis in the circumferential direction\ but unrestrained about an axis in the axial direction
of the shell[# According to the classical analysis based on the Donnel\ Von Karman\ Vlasov
moderate de~ection shell theory\ the buckling modes involve a sinusoidal shape in the axial as well
as circumferential direction\ and the corresponding axial buckling stresses are given by]
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l �
0
1

scl 0C¦
0
C1 "48#

where

scl �
Eh

Rz2"0−n1#
"59#

and

C �
b1

0

ðb1
0¦b1

1Ł1
"50#

In the above equations E is the modulus of elasticity\ n is the Poisson ratio\ and h is the shell
thickness[ In addition R is the radius\ while b0 and b1 are dimensionless wavenumbers given by

F

j

J

f

b0 �
l9
l0

�
ml9
l

b1 �
l9
l1

�
nl9
pR

\

F

j

J

f

l0 �
l
m

l1 �
pR
n

"51#

In the above relations m and 1n are the number of half waves involved in the buckling mode for
the axial and circumferential directions\ respectively^ l0 and l1 are the corresponding half!wave!
lengths^ and l9 is a reference half wavelength "half wavelength of the axisymmetric mode with the
lowest buckling load# given by

l9 �
pzRh

ð01"0−n1#Ł0:3
"52#

The buckling load l given by eqn "48# is minimized when C � 0[ In this case eqn "50# becomes

"b0−
0
1
#1¦b1

1 �"0
1
#1 "53#

which represents the Koiter|s circle "Fig[ 1#[ The points on Koiter|s circle correspond to buckling
modes for which the critical load is a minimum[ However\ boundary conditions dictate that only
discrete values of b0 and b1 are possible corresponding to integer values of m and n ðsee eqn "51#Ł[
This gives rise to a grid of points corresponding to possible values of b0 and b1[ The points falling
closest to Koiter|s circle will correspond to the lowest buckling loads[ "More precisely\ the contours
of constant buckling load in the b0\ b1 wavenumber space are circles which are tangent to Koiter|s
circle at the origin[#

By appropriate choice of the problem parameters one can ensure that the grid of possible
buckling modes on the Koiter|s circle includes modes at points "0\ 9# and "0:1\ 0:1#[ These are
shown as points A and B in Fig[ 1[ They correspond to two fully coincident buckling modes at the
lowest possible bifurcation load[ Point A corresponds to an axisymmetric mode shown in Fig[ 2a[
The length of the cylinder is chosen such that this mode involves two half waves in the axial
direction "i[e[ m � 1#[

In regard to the circumferential direction\ the thickness of the cylinder is chosen so that the
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Fig[ 1[ The Koiter|s circle\ the grid shown corresponds to two coincident buckling modes[

mode at B "Fig[ 1# corresponds to a mode involving 13 full waves in the circumferential direction
"i[e[ n � 13#[ This mode is illustrated in Fig[ 2b[ For the full cylinder\ a large number of closely
spaced modes with nearby values of n would be possible[ However\ to reduce the number of
possible modes\ attention is focused on a cylindrical panel with symmetry boundary conditions at
the ends\ rather than on the full cylinder[ The width of the panel is taken to be one 37th of the
circumference\ so that the mode corresponding to point B in Fig[ 1 "or mode 1 in Fig[ 2# involves
one half wavelength over the width of the panel[ This means that the modes that are possible for
the panel are also modes for the cylindrical shell with "n � 9\ 13\ 37\ 61\ [ [ [ [#[ Thus\ the solutions
for the cylindrical panel problem "Fig[ 3# also correspond to solutions for the full cylinder\ but for
the full cylinder there may be additional solutions "corresponding for instance to secondary
bifurcations# that are not present in the cylindrical panel problem[

In the _nite element analysis\ the cylindrical panel is discretized into 05 nine!node shell elements[
This implies an element length of one quarter of the minimum buckling wavelength in the axial
direction\ and one eighth the minimum buckling wavelength in the circumferential direction[ A
converged solution is obtained on the principal branch at a reference point which is very close to
the bifurcation point "9[886#[ Since the stability operator fc

\uu loses its positive de_niteness at the
critical point\ we cannot get a converged solution exactly at l � 0[9[ However\ the reference point
does not have to coincide with the bifurcation point "Peek and Kheyrkhahan\ 0882#[ The _rst and
the second buckling modes of the complete cylinder as obtained from the _nite element solution
are shown in Fig[ 2[

Evaluation of the third order postbuckling coe.cients fijk using the _nite element based
approach yields zero for all postbuckling coe.cients\ except for f011 � f101 � f110[ With proper
normalization of the modes the asymptotic expansion of the reduced equilibrium equations results
in

6
−Dlj0¦

0
1
f011j

1
1¦= = = � 9

−Dlj1¦f011j0j1¦= = = � 9
"54#
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Fig[ 2[ The buckling modes of a cylinder subjected to axial load[

for which the bifurcated solution can be written as

j0 � j¦O"j1#\ j1 � O"j1#\ l � lc¦O"j1#

j0 � −z0:2j¦O"j1#\ j1 � 2z1:2j¦O"j1#\ l � lc¦l¹0j¦O"j1# "55#
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Fig[ 3[ The cylindrical panel and the nodal points which are used to de_ne the buckling de~ections[

where l¹0 � −f011:z2 and j is a solution parameter\ which can assume positive or negative values[
Thus there are a total of three bifurcated solution branches through the multiple bifurcation point[
The solution above\ without the higher order terms\ will be referred to as the leading order solution[
A higher order accurate solution may be obtained by including also the fijkl term in the truncated
series of the reduced equilibrium equations "Peek and Kheyrkhahan\ 0882#\ and solving the
resulting equations numerically\ to obtain higher order accurate values of j0\ j1\ and l[ Higher
order accurate values of the displacements are then obtained from

u � u
9
"l#¦ s

m

i�0

jiu½
i

¦
0
1

s
m

i�0

s
m

j�0

jijj u
"ij#

"56#

This higher order accurate solution is illustrated in Fig[ 4 together with the leading order solution\
and the exact solution\ computed by numerically tracking the bifurcated solution branches[ The
buckling displacements shown in Fig[ 4 are de_ned as

u0 � 0
3
"w0¦w1−w2−w3#\ u1 � 0

1
"w1−w0# "57#

where wi refers to the transverse displacement at the node labeled i in Fig[ 3[ This de_nition ensures
that the _rst buckling mode contributes only to buckling displacement u0\ and the second buckling
mode only to buckling displacement u1[ Another view of the bifurcation diagram can be obtained
by plotting the load as a function of end shortening "Fig[ 5#[ As can be seen inclusion of the higher
order term increases accuracy and the results follow the exact solution up to 14) load drop[

So far the solutions for the perfect structure have been investigated[ Consider now a cylinder
with a geometric imperfection that is a linear combination of the buckling modes\ in the form

u¹ � o"a¹0u½
0

¦a¹1u½
1

# "58#
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Fig[ 4[ Bifurcation diagrams of a cylindrical panel subjected to axial load[

where o is the imperfection amplitude\ and a¹0 and a¹1 describe the direction of the imperfection
with a¹1

0¦a¹1
1 � 0[ The reduced equilibrium equation for this case can be written as

"lc¦Dl#a¹0o−Dlj0¦
0
1
f011j

1
1¦= = = � 9

"lc¦Dl#a¹1o−Dlj1¦f011j0j1¦= = = � 9 "69#

It has been shown by Koiter "0834# and by Triantafyllidis and Peek "0881# that the worst shape
of a geometric imperfection corresponds to the incremental displacements on the bifurcated branch
of the perfect structure for which the load drops most rapidly[ This is the solution branch given
by eqn "55#\ and corresponds to the two descending bifurcated branches shown in Fig[ 4[ Thus it
is seen that the worst shape of imperfection is given by
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Fig[ 5[ Relation between load and end!shortening of a cylindrical panel subjected to axial load[

a¹0 � −z
0
2
\ a¹1 � 2z

1
2

"60#

For this case a {full analysis| is performed by numerically tracking the solutions for the imperfect
structure[ This requires the analysis to be repeated for a range of values of the imperfection
amplitude o[ The results of these analyses are shown in Figs 6 and 7[ As can be seen increasing the
imperfection amplitude causes the local maximum of the equilibrium path to drop signi_cantly
below the bifurcation load of the perfect structure[ For instance\ one may note that for the
imperfection amplitude of 9[1 the limit point is about 45) of the bifurcation load[ Figure 6 clearly
illustrates the shell|s sensitivity to imperfections[ The limit point loads obtained from each of these
analyses are plotted in Fig[ 8 as functions of imperfection amplitude under the label {Full Analysis|[

For the asymmetric bifurcation\ the drop in the load carrying capacity of the structure "de_ned
as the di}erence between the load l at the bifurcation point and that at the _rst limit point for the
imperfect structure# can be written as "see e[g[ Triantafyllidis and Peek\ 0881#

Dl

lc

� 1 0
−l¹0

lc 1 o0:1¦O"o# "61#

This result can be obtained from only the leading order terms in eqn "69#[ This relationship "not
including any higher order terms# is shown in Fig[ 8 as the {L[O[ asymptotic| result[ Therein the
modes have been normalized in such a way that o � 0 represents a maximum geometric imperfection
amplitude of one shell thickness[
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Fig[ 6[ Equilibrium branches of an imperfect cylindrical panel\ the imperfection amplitudes considered are o � 9[990\
9[991\ 9[992\ 9[994\ 9[996\ 9[90\ 9[904\ 9[91\ 9[92\ 9[93\ 9[94\ 9[95\ 9[96\ 9[97\ 9[98\ 9[0\ 9[01\ 9[04\ and 9[1[

Including also the term of order oDl yields the following improved solution for the load at the
limit point "see e[g[ Koiter\ 0834^ Kheyrkhahan\ 0884#

Dl

lc

�
1l¹0

lc

ð−o¦zo1−lco:l¹0Ł "62#

which is shown in Fig[ 8 as the {Improved Asymptotic| result[
Further improvements in the asymptotic solution can be obtained if one includes also the

fijkljjjkjl terms in eqn "69#[ In this case one needs to solve the system numerically[ It can be shown
that for this problem with linear prebuckling solution\ this yields a higher order accurate solution\
which is therefore shown in Fig[ 8 under the label {H[O[ Asymptotics|[

The results in Fig[ 8 indicate that all asymptotic calculations predict the drop in the load!
carrying capacity with an accuracy better than 09) "of the load drop# for imperfection amplitudes
up to o � 9[0 "i[e[ one tenth of the wall thickness#[ At an imperfection amplitude of o � 9[1\ the
accuracy of the improved asymptotic and higher order asymptotic results are still within 09) "on
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Fig[ 7[ Equilibrium paths of an imperfect cylindrical panel\ the imperfection amplitudes considered are 9[90\ 9[94\ and
9[0[ The fundamental equilibrium path and the bifurcated equilibrium path of the perfect structure are shown in solid
lines[

the unconservative side#\ and for the leading order asymptotic result the accuracy is within 19)
"on the conservative side#[ These errors are not large\ compared to what might have been incurred
by failing to pick the worst shape of imperfection[ For a number of design situations\ larger
imperfections can occur\ and in such circumstances it is still advisable to complement the asymptotic
analyses by full analyses of the system[ Nevertheless\ the asymptotics are still valuable in identifying
the worst shapes of imperfection\ and gaining an improved overall understanding of the behavior
of the structure[

2[4[ Example 1] Cylinder with two closely spaced modes under axial load

By slightly modifying the dimensions of the cylindrical panel of the preceding example\ one
obtains a system with two closely!spaced buckling modes[ More speci_cally\ the changes made are
such that point A in Fig[ 1 remains on the Koiter|s circle[ Thus the axisymetric mode remains at
the minimum buckling load of l0[ However point B "in Fig[ 1# moves away from Koiter|s circle\
and therefore corresponds to a mode with a higher buckling load of l1 � 0¦a\ say[ In this case
the reduced equilibrium equations for the perfect system can be written as "see Kheryrkhanan\
0884#
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Fig[ 8[ {Load dropÐimperfection amplitude| diagrams for an imperfect cylindrical panel[

"l0−l#j0¦
0
1
fj1

1¦= = = � 9 "63#

"l1−l#j1¦fj0j1¦= = = � 9 "64#

where li � lc¦mi is the buckling load as calculated from the linearized eigenvalue problem ðeqn
"5#Ł[ One solution to the above is an axisymmetric case given by

j1 � 9\ l � l0\ and j0 arbitrary "65#

There are no solutions involving j0 � 9 except the principal branch[ If j1 � 9 then from eqn "64#
we have
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Fig[ 09[ Schematic _gure of the asymptotic solutions to the bifurcated branches of a cylinder with non!coincident modes[

l � l1¦fj0 "66#

Substitution into "63# results in

"l0−l1−fj0#j0¦
0
1
fj1

1 � 9 "67#

Since l0−l1 is small\ the ratio of j0 and j1 for very large values is given by

j0 ½ 2
j1

z1
"68#

At the point where j1 � 9\ the parameter j0 is either zero or is found from j0 �"l0−l1#:f[
Substitution of j0 into "66# gives l � l0[ Therefore\ this point is on the same solution as "65#[ A
simple change of variables "h � j0−ð"l0−l1#:1fŁ# and substitution into "67# leads to the hyper!
bolic relation

0
l0−l1

1f 1
1

−h1¦
0
1

j1
1 � 9 "79#

which is symmetric about h � 9 and j1 � 9[ The above equation is shown in Fig[ 09[ Regarding
the sign of "l0−l1#:f there are several possibilities[ For ð"l0−l1#:fŁ × 9 one obtains]
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Fig[ 00[ Schematic _gure of the bifurcated branches for a cylinder with non!coincident modes[

If f ³ 9 and l0 ³ l1 then 6
branch "I# descending

branch "II# ascending
"70#

If f × 9 and l0 × l1 then 6
branch "I# ascending

branch "II# descending
"71#

In our numerical study f turned out to be negative and l0 ³ l1[ Therefore\ we have ð"l0−l1#:fŁ × 9
and eqn "70# applies[ A schematic drawing of the bifurcated branches in ji−l space is shown in
Fig[ 00[

The bifurcated solution branches for the perfect structure are shown in Figs 01Ð03 for mode
separations of 4)\ 04)\ and 14)\ respectively[ All three bifurcated branches are numerically
tracked[ Branch switching at the secondary bifurcation point B in Fig[ 00 is carefully handled to
generate both sides of the descending branch[ The asymptotic solutions are shown in Figs 01Ð03
by solid lines[

In the case of the axisymmetric bifurcated branch "the horizontal dotted lines#\ the exact and
asymptotic solutions coincide[ For the rising bifurcated branches\ as the two bifurcation points
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Fig[ 01[ Bifurcated branches for a cylinder with non!coincident modes\ the two bifurcation points are 4) apart[

are moved further apart\ the accuracy is not greatly a}ected[ In the case of the descending branches
"which are of more interest# the exact solutions and asymptotics agree up to 19) load drop\ when
the bifurcation points are 4) apart[ However\ when the two modes are 04) apart the agreement
lasts up to 04) load drop[ As the modes are moved further apart to 14)\ the asymptotics match
the exact solutions up to 09) load drop[

This example shows that despite up to 14) mode separation the asymptotics still provide a
reasonable approximation to the exact solution in the vicinity of the bifurcation points[ Certainly
the asymptotics allow one to identify the most critical one of the branches\ which in this case is a
secondary bifurcated branch[ This illustrates how the asymptotics and the full analysis can be used
to complement each other\ by _rst identifying the most critical branch with the asymptotics\ and
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Fig[ 02[ Bifurcated branches for a cylinder with non!coincident modes\ the two bifurcation points are 04) apart[

then using the full solution to track it\ in order to obtain more accurate results further away from
the bifurcation point[

2[5[ Example 2] Spherical cap subjected to uniform external pressure

Whereas the previous two examples covered a small number of coincident or non!coincident
modes with linear prebuckling behavior\ this example has two additional features] nonlinear
prebuckling behavior\ and a large number of potentially interacting modes[ For this purpose\ a
spherical cap that is fully _xed all around the edge is considered[ The radius to thickness ratio is
0999\ and the meridional angle from the apex to the lower edge is 19>[ Normally for the _nite
element analysis of shells\ it is su.cient for the elements to be small compared to typical dimensions
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Fig[ 03[ Bifurcated branches for a cylinder with non!coincident modes\ the two bifurcation points are 14) apart[

of the shell\ except perhaps in certain boundary layer regions where stresses vary rapidly and some
mesh re_nement is needed in order to properly resolve these variations[ However if the problem
involves buckling\ it is also necessary for the element size to be small compared to typical buckling
wavelengths[ The mesh used for this purpose is shown in Fig[ 04[ It involves 315 nine!node shell
elements\ 1935 nodal points\ and 09\129 degrees of freedom[ In view of computing limitations and
the large number of solutions that needed to be computed in order to provide the results reported
here\ only half the shell is modeled\ using symmetry boundary conditions[ This means that only
solutions which are symmetric about a plane through the axis of axisymmetry are considered\ even
though solutions that do not possess this symmetry are also conceivable[

In order to visualize the bifurcated solutions\ it is useful to de_ne buckling displacements as the
Discrete Fourier Transform of the transverse displacement at evenly spaced nodes around the
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Fig[ 04[ The _nite element mesh used to model the spherical cap[

circumference[ If the transverse displacements are denoted by w9\ w0\ w1\ [ [ [ \ wN for points covering
half the circumference "beginning with w9 on the plane of symmetry\ and ending with wN on the
diametrically opposite end of the plane of symmetry#\ then the buckling displacement can be
written as

u¼k �
0

1N
s
N

j� −N¦0

wj cos 0
pkj
N 1 \ w−j � wj "72#

For the mesh considered the displacements wj are taken to be those on a circle of nodes at an angle
of 05[5> from the apex\ for which N � 097[ The use of these buckling displacements makes it easier
to interpret the results\ since "except for k � 9# the buckling displacements u¼k are all zero for the
principal solution[ Furthermore these buckling displacements allow any periodicity of the solution\
as well as symmetry!breaking secondary bifurcations to be readily identi_ed[

Results for the bifurcated branches of the perfect structure are shown in Figs 05 and 06[ Therein
dashed lines are derived from the asymptotics\ whereas solid lines correspond to {exact| results
computed by numerically tracking the bifurcated branches[ Also solid black dots "of circular
shape# identify secondary bifurcations located by the full analysis "by means of a change in the
number of negative eigenvalues of the tangent sti}ness matrix#\ whereas hollow dots indicate
secondary bifurcations identi_ed by the asymptotics[ More speci_cally\ the results for the perfect
system were calculated as follows]

"i# The principal solution is calculated by solving the full system up to a point close to the _rst
bifurcation[ This point is then used as the reference point\ the linearized eigenvalue problem
ðof eqn "5#Ł is solved\ and the postbuckling coe.cients fijk and fijkl are calculated[ In this case
sixteen buckling modes are considered[ The corresponding buckling loads and circumferential
wavenumbers are shown in Table 0\ and the mode shapes are shown in Figs 07Ð10[

"ii# Since there is some separation of the modes\ bifurcated branches emanate from the principal
solution at each of the bifurcation loads and in the direction of the corresponding buckling
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Fig[ 05[ Bifurcated branches for the spherical cap[ Solid lines represent the exact solutions and dashed lines represent
the asymptotics[
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Fig[ 06[ Bifurcated branches for the spherical cap\ continued[ Solid lines represent the exact solutions and dashed lines
represent the asymptotics[
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Table 0
The buckling loads and their wave numbers for the spherical cap
subjected to uniform pressure

Buckling mode Wave number Buckling load

0 03 9[68025
1 02 9[68286
2 04 9[68414
3 01 9[79212
4 05 9[79403
5 00 9[70806
6 06 9[71931
7 09 9[73013
8 07 9[73231

09 08 9[75455
00 8 9[75848
01 19 9[78329
02 7 9[89427
03 10 9[81564
04 8 9[82195
05 7 9[82375

mode[ These bifurcated branches were tracked numerically for modes 0 to 3 and are denoted
by solid lines in Figs 05a\ b and 06a\ b\ respectively[

"iii# In a similar way as for the full system\ the reduced equilibrium equations are solved including
all sixteen modes[ This is achieved with the same numerical procedure for tracking the
bifurcated branches as is used for the full system\ except that in this case there are only 05
equations with 05 unknowns[ The fijk terms as well as the fijkl terms are included in the
reduced equilibrium equations[ Once the modal displacements ji are obtained\ the cor!
responding buckling displacements denoted in Figs 05 and 06 by dashed lines are computed
with the aid of eqn "72#[

Examine _rst the bifurcated branch corresponding to mode 0 "circumferential wavenumber k � 03#
shown in Fig[ 05a[ Initially the exact solution "solid line# and asymptotic solution "dashed line#
coincide\ so that it is impossible to distinguish them[ The asymptotics also reproduce the location
of the _rst secondary bifurcation fairly accurately\ as can be seen from two nearby dots\ one solid
and the other hollow[ This _rst secondary bifurcated branch was not tracked[ Continuing instead
on the primary bifurcated branch\ a second secondary bifurcation point is located by the full
analysis\ but the asymptotic solution veers o} at approximately the same point[ This suggests that
due to some inadvertent imperfection the asymptotic solution has switched to a secondary bifur!
cated branch[

Unintended imperfections can also be observed by examining the buckling displacements for
circumferential wavenumbers k � 7\ 09\ and 01\ shown in Fig[ 05a by dashed lines close to the
principal branch[ These are seen to be small\ but they should be zero[ Indeed\ the bifurcated branch
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Fig[ 07[ Buckling modes of a spherical shell subjected to uniform pressure[

under investigation should be periodic in the circumferential direction with k � 03 repetitions of
the same solutions around the circumference[ This means that only the buckling displacements
for wavenumbers k � 9\ 03\ 17\ 31\ [ [ [ can be nonzero\ except if a symmetry!breaking secondary
bifurcation occurs "see e[g[ Wohlever\ 0882^ Healy\ 0877#[ Therefore\ the observed deviations from
zero for buckling displacements corresponding to k � 7\ 09\ and 01 waves are due to imperfections[
Such imperfections arise because of the _nite element discretization[

According to the symmetry group terminology used by Healy "0877# and Wohlever "0882# the
symmetries of the spherical cap are those of a continuous dihedral group denoted by D�[ Any
amount of rotation about the axis of axisymmetry\ or a re~ection about a plane through this axis
does not alter the structure[ However for the discretization used the mesh is periodic with k � 01
repetitions of the same mesh pattern around the circumference[ In addition each unit cell is
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Fig[ 08[ Buckling modes of a spherical shell\ continued[

symmetric[ This corresponds to the dihedral symmetry group denoted by D01[ Therefore\ except
for the mode with circumferential wavenumber k � 01\ the discretized structure is not a perfect
one[ This explains the non!zero buckling displacements for k � 7\ 09\ and 01\ and also the tendency
for the numerical tracking of the bifurcated branches to veer o} onto secondary bifurcated
branches[ Indeed the veering of the bifurcated branches is also observed for the bifurcated branches
corresponding to modes 1 and 2 "see Figs 05b and 06a\ respectively#[ However for mode 3 with
k � 01 "Fig[ 06b# there is no veering of the bifurcated branches\ as expected\ because in regard to
this bifurcated branch the discretized structure is perfect\ and the only inadvertent imperfections
that could arise are due to numerical truncation errors\ which in this case "using double precision
computer arithmetic with an accuracy of about 05 decimal digits# are signi_cantly smaller than
the discretization error[
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Fig[ 19[ Buckling modes of a spherical shell\ continued[

Of all the solutions for the perfect spherical cap shown in Figs 05 and 06 it appears that the only
signi_cant di}erences between the asymptotic and exact solutions arise when these represent
di}erent solution branches[ This means that the accuracy of the asymptotics still is very good in
the range examined[ However an extremely complicated picture emerges for the bifurcation
diagram of this structure[ Even though the asymptotics make it possible to compute the solutions
more rapidly\ there are just too many solution branches to be computed if one wants to obtain the
full bifurcation diagram "which includes secondary branches\ tertiary branches\ etc[#[ Indeed Figs
05 and 06 provide only a tiny glimpse of the bifurcation diagram for this structure[

If obtaining a full bifurcation diagram for the structure considered is not feasible\ there are two
other possibilities] one of them is to employ dynamic analysis methods whereby one abandons any
attempt to obtain static equilibrium solutions on the bifurcated branches\ and instead models the
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Fig[ 10[ Buckling modes of a spherical shell\ continued[

dynamic behavior of the system after loss of stability[ The other approach is to include a geometric
imperfection\ and examine its e}ect on the load carrying capacity of the structure[ For a design
problem\ where one wants to avoid loss of stability\ rather than understand what happens if loss
of stability does occur\ this imperfection based approach is still an appealing one[ However\ in lieu
of a complete bifurcation diagram\ one lacks the information as to what the worst shape of
imperfection might be[ Therefore it is particularly important to perform the analysis for various
shapes of imperfections so that one can cover the worst situation that might arise in the actual
structure[ Again it is here that the asymptotic methods can help\ by reducing the computational
e}ort required for every imperfection considered by several orders of magnitude[

In order to investigate the possibilities of the asymptotics in predicting imperfection sensitivity
we introduce random geometric imperfections into the spherical cap[ For comparison\ the equi!
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Fig[ 11[ Equilibrium paths of a spherical cap with random imperfections\ the imperfection amplitudes considered are
o � 9[95\ 9[97\ 9[0\ 9[01\ 9[03\ 9[05\ 9[07\ 9[12\ 9[17\ 9[23\ 9[4\ 9[64\ 0[9\ 0[1\ 0[4\ 1[9\ 2[9\ and 3[9[

librium paths for several imperfection amplitudes are tracked numerically "Fig[ 11#[ The _rst local
maximum "limit point# of each curve in Fig[ 11 provides one point on the load drop!imperfection
amplitude diagram[ This {exact| solution is shown with a solid line in Fig[ 12[

The relation between the imperfection amplitude and the drop in the load carrying capacity is
generated by the LSK method with little e}ort[ One simply solves the reduced equilibrium eqns
"14#\ by numerically tracking the equilibrium branch for the imperfect system starting at low values
of the load parameter l where a unique solution can readily be identi_ed[ This process is repeated
for as many imperfection amplitudes as are necessary to generate a smooth curve[ The results are
shown in Fig[ 12 for di}erent truncations of the Taylor series for the reduced equilibrium equations[
Speci_cally for the curve labeled fijk\ the terms corresponding to the postbuckling coe.cients fio\
fij\ fijl\ and fijk are included[ For the curve labeled fiol\ the fiol term is included as well by
approximating it by fiol ¼ fio:lc\ a relationship that is strictly valid only for linear prebuckling\
but is also used here as an approximation[ Finally for the curve labeled {fijkl|\ the fijkl terms are
included as well as all of the above[ As can be seen in Fig[ 12\ the LSK method can provide an
accuracy of better than 09) up to imperfections that are two and a half times the shell thickness[
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Fig[ 12[ {Load dropÐimperfection amplitude| diagrams for a spherical cap with random imperfections[

Instead of using a random imperfection\ one can also pick imperfections according to the mode
shapes that are expected to interact most strongly[ This requires certain relationships between the
wavenumbers of the interacting modes[ For this spherical cap the lowest wavenumber among the
05 buckling modes calculated is k � 7\ which belongs to both modes 02 and 05 "Table 0#[ Mode 4
has the wavenumber of 05 which is twice the wavenumber of mode 02[ Peek "0884# showed that if
the wavenumbers corresponding to the modes i\ j and k in fijk are mi\ mj\ and mk\ then one can
only obtain a nonzero fijk if mi2mj2mk � 9[ This condition is satis_ed for modes 4 and 02[ Thus\
we expect that the third order postbuckling coe.cient f4\02\02 be nonzero as indeed it is[

The imperfection is chosen to correspond to the incremental displacements that would occur on
the most steeply descending bifurcated branch involving the interaction of modes 4 and 02\ if
modes 4 and 02 were fully coincident[ This leads to an imperfection shape given by

u¹ � o"z0
2
u½
4

¦z
1
2
u½
02

# "73#
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Fig[ 13[ Equilibrium paths of a spherical cap with an imperfection in the form of a linear combination of modes 4 and
02 "wave numbers 05 and 7\ respectively#[ The imperfection amplitudes considered are] o � 9[0\ 9[04\ 9[1\ 9[17\ 9[3\ 9[4\
9[6\ 9[8\ 0[1\ 0[4\ 1[9\ 1[3\ 2[9\ 2[6[ Buckling de~ection shown is for wavenumber 05[

The same imperfection sensitivity analyses performed for the random imperfection\ are also
performed for this imperfection shape\ with the results shown in Figs 13Ð15[ The equilibrium
branches obtained from the analysis of the full system for various amplitudes of imperfection are
shown in Figs 13 and 14 for buckling displacements corresponding to modes 4 and 02\ respectively[
As expected\ only the buckling displacements corresponding to these wavenumbers were found to
be nonzero[

The results in Fig[ 15 show excellent agreement with the exact solution when the third and fourth
order postbuckling coe.cients are included[

3[ Conclusions

After having extended the LyapunovÐSchmidtÐKoiter decomposition and asymptotic expansion
technique to include nonlinear prebuckling behavior as well as multiple not necessarily coincident
modes "Peek and Kheyrkhahan\ 0882#\ this paper focuses on the application of this framework to
general shells modeled by the _nite element method[ For this purpose a conventional displacement!
based nonlinear shell element formulation "with four to nine nodes and selective reduced inte!
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Fig[ 14[ Equilibrium paths of a spherical cap with an imperfection in the form of a linear combination of modes 4 and
02 "wave numbers 05 and 7\ respectively#[ The imperfection amplitudes considered are] o � 9[0\ 9[04\ 9[1\ 9[17\ 9[3\ 9[4\
9[6\ 9[8\ 0[1\ 0[4\ 1[9\ 1[3\ 2[9\ 2[6[ Buckling de~ection shown is for wavenumber 7[

gration# is developed with capabilities to evaluate "analytically# the derivatives of the potential
energy with respect to the nodal displacements up to the fourth order\ as well as the derivatives
with respect to the nodal coordinates needed for the imperfection sensitivity analysis[ The resulting
{LSK shell element| is integrated into a general purpose nonlinear _nite element program\ and
used for examples covering nonlinear prebuckling behavior as well as multiple potentially inter!
acting modes "coincident or not#[

The advantage of the method is that it allows the bifurcation diagram for the structure "i[e[ all
solutions in the neighborhood of a bifurcation point# to be investigated with a reduced set of
equilibrium equations\ with one degree of freedom for each potentially interacting mode[ Thus the
_nite element analyst may view the LSK approach as a nonlinear static condensation\ in which
the reduced set of equilibrium equations are in the form of a Taylor series expansion[ Including
only the leading order term in the series can already provide signi_cant insight into the behavior
of the system[ Comparison of the asymptotic results from the truncated Taylor series for the
reduced equilibrium equations with {exact| results reveals that including certain higher order terms
signi_cantly improves the accuracy of the asymptotic results[ The asymptotic predictions were
found to have good accuracy within about 19) of the bifurcation load\ and for mode separations
up to 14)[
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Fig[ 15[ {Load dropÐimperfection amplitude| diagrams of a spherical cap[ The imperfection considered is a linear
combination of modes 4 and 02[

For many applications the number of potentially interacting modes becomes quite large[ For
instance for the spherical cap problem considered here\ 05 potentially interacting modes were
included in the asymptotic analysis[ In this case\ the asymptotics were still found to give accurate
results\ where the {exact| and asymptotic solutions could be compared for the same solution
branch[ Thus the range of validity of the asymptotics was not exceeded[ However the bifurcation
diagram that emerges is so complex\ that computing all the bifurcated branches\ secondary
bifurcated branches\ and so on in the vicinity of the primary bifurcation points does not seem
currently feasible\ even though the asymptotics reduce the computational e}ort required by several
orders of magnitude[ More speci_cally\ even with the range of validity of the asymptotics\ the
bifurcation diagram is too complex and it is not feasible to obtain a full picture of it[ In this case
it is preferable to use the asymptotics to investigate the imperfection sensitivity of the structure[

The LSK shell element developed also allows the leading order term in the reduced equilibrium
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equations to be calculated for an arbitrary geometric imperfection[ Therefore\ the asymptotics can
also be used to calculate the drop in the load carrying capacity of the structure due to imperfections[
Here too\ the accuracy of the asymptotics is found to be good for imperfections producing drops
in the load carrying capacity of up to somewhere between 19Ð49) depending on the speci_c
example considered[ This corresponds to geometric imperfection amplitudes of the order of the
shell thickness "more precisely\ in case of the cylindrical panel the imperfection amplitudes were
up to one _fth of the shell thickness\ and in the case of the spherical cap the imperfection amplitudes
were as large as two and a half times the shell thickness#[ Indeed for the cylindrical shell it is
observed "by numerically tracking the equilibrium path# that imperfections larger than one _fth
the shell thickness do not even produce a limit point "see Fig[ 6#[ In this case\ the range of validity
of the asymptotics is as good as it can possibly be[

Finally it is worth comparing this methodology for investigating "multiple# bifurcations with
the symmetry group approach developed by Healy and Wohlever "0877\ 0882#[ Their approach is
not limited to elastic structures\ nor is there any question about a potentially limited range of
validity of the asymptotics[ Also it allows one to avoid computing solution branches that can be
obtained by a symmetry operation such as re~ection or rotation on some other solution branch[
This symmetry group approach does however require the symmetries of the structure to be
described before beginning the analysis\ so that these symmetries can be incorporated into the
analysis methodology[ In contrast\ when using the asymptotics\ the description of the _nite element
model is no di}erent from that of a conventional _nite element analysis[ Essentially the symmetry
group approach is more reliable than the asymptotics\ but it also tends to require more com!
putational e}ort to track any given equilibrium branch\ since even with exploitation of the
symmetries\ the systems of equations to be solved tend to be larger than the reduced equilibrium
equations of the asymptotic approach[ Indeed in the symmetry group approach\ the computational
e}ort for tracking the bifurcated branches increases\ with each symmetry!breaking bifurcation[
Therefore\ for structures with very complex bifurcation diagrams\ such as the spherical cap
considered here\ obtaining a complete picture of the bifurcation diagram may still not be feasible[

For the case of the imperfect structures\ symmetries are broken[ So there is less advantage in
using the symmetry group approach[ Indeed a general random imperfection will break all
symmetries[ This renders the symmetry group approach not applicable\ whereas the asymptotic
approach can still be used[

Despite the arguments presented\ the asymptotics and symmetry group approach should be
regarded as complementary rather than competing methodologies[ Indeed one may fail to solve
even the reduced equilibrium equations without an understanding of the symmetries of the struc!
ture[ On the other hand symmetries can also be exploited in conjunction with the asymptotic
approach[ For instance\ for a periodic structure "cyclic symmetry group# the asymptotic reduced
equilibrium equations for the whole structure can be derived from a _nite element discretization
of only one of the unit cells using only the degrees of freedom associated with that unit cell "Peek\
0884#[
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